

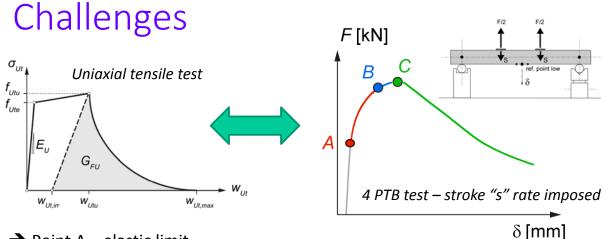
CHARACTERIZATION OF THE TENSILE RESPONSE OF STRAIN HARDENING UHPFRC - CHILLON VIADUCTS

Emmanuel Denarié¹, Lionel Sofia², Eugen Brühwiler¹

- 1 Structural Maintenance and Safety Laboratory - MCS/IIC/ENAC
- 2 Laboratory of Construction Materials LMC/IMX/STI

UHPFRC 2017 October 2-4 Montpellier (France)

Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

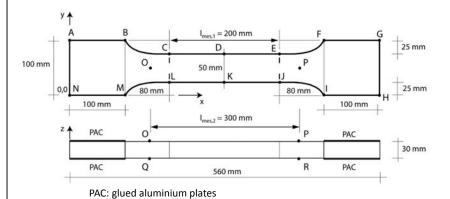

Motivation

- Normative approach (works for Swiss document SIA CT 2052)
- Focus on elastic-hardening domain
- Avoid range of action of tensile softening on flexural response
- o Improve detection of elastic limit with objective criterion
- Propose simple inverse analysis method
- Compare with results of Non Linear FEM calculations
- Apply to the case of Chillon viaducts site (CH 2014-2015)

Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

- → Point A = elastic limit
- → From points A to B, tensile hardening active (if any)
- → Pre-peak, after point B, effect of tensile softening on flexural response
- → Multiple cracks with tensile softening zones likely between B and C
- → Deflection hardening = increase of resistive moment!
- → Remain between points A and B for simplified inverse analysis
- → Detect point B

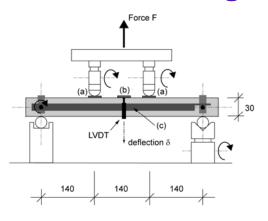
3


UHPFRC 2017 October 2-4 Montpellier (France)

Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

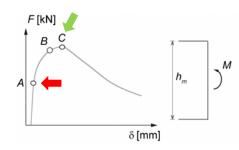
Uniaxial tensile test

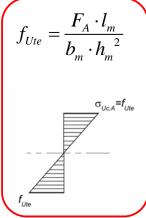
- → Supports: fixed ends
- → 2 pairs LVDT in two perpendicular planes
- → Constant stroke rate
- → Cast in molds or cut out of larger cast plates (suitability tests)
- → Thickness: 30 mm
- → Data acquisition at 5 Hz

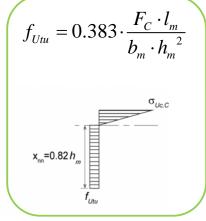


T bending test on strips

- \rightarrow 500 mm long specimen, height h_m=30 mm, width b_m=100 mm, span l_m= 420 mm; upper casting face, surfaced, under tension
- → Cast in molds or cut out of larger cast plates
- →LVDT attached to measurement frame, fixed to middle axis of specimen
- → Constant loading rate imposed: stroke at points (a)
- → Data acquisition at 5 Hz


UHPFRC 2017 October 2-4




Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

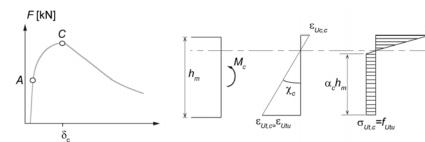
Interpretation

- \rightarrow f_{Ute} and E_{Ut} (point A) defined by irreversible variation of more than 1 % of the moving average of the secant elastic modulus
- → f_{Utu} (point C) defined at peak force by stress block assumption validated by large FEM calculation database for the specimen geometry

 $f_{Utu} > f_{Ute}$: strain hardening UHPFRC $f_{Utu} < f_{Ute}$: Strain softening UHPFRC

→ No inverse analysis

 $\rightarrow \varepsilon_{Utu}$ (point B) determined by simplified inverse analysis



LIHPERC 2017 October 2-4

Inverse analysis – Simplified method after AFGC (2013)

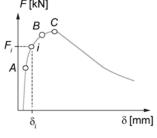
$$\chi = \frac{216}{23} \cdot \frac{\delta}{l_m^2}$$

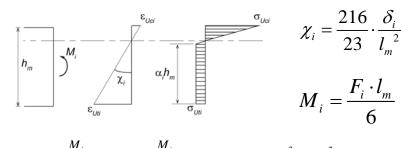
$$M = \frac{F \cdot l_m}{6}$$

$$2\alpha^{3} - 3\alpha^{2} + 1 - \frac{M}{\chi \cdot E_{U} \cdot I} = 0 \quad \sigma_{Ut} = 0.5(1 - \alpha)^{2} h_{m} \chi E_{U} \quad \varepsilon_{Ut} = \frac{\sigma_{Ut}}{E_{U}} + \chi \alpha h_{m}$$

AFGC UHPFRC guidelines (2013), Annex 4, §3.2: "Simplified back analysis"

- → Assumes elastic expression of curvature in constant moment zone (explicitly mentioned as simplification, strictly valid only in elastic domain)
- \rightarrow Calculation only for peak force F_c and associated deflection
- ightharpoonup Assumes « f_{Utu} and $arepsilon_{Utu}$ are calculated from the stress and strain obtained under the maximum moment" i.e.: maximum force = point C
- → Simple method but effect of tensile softening already significant at peak


UHPFRC 2017 October 2-4



Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

Inverse analysis – proposed method

$$\chi_i = \frac{216}{23} \cdot \frac{\delta_i}{l_m^2}$$

$$M_i = \frac{F_i \cdot l_m}{6}$$

$$2\alpha_i^3 - 3\alpha_i^2 + 1 - \frac{M_i}{\chi_i \cdot E_U \cdot I} = 0 \quad \text{with} \quad \lambda_i = \frac{M_i}{\chi_i \cdot E_U \cdot I} = 12 \frac{M_i}{b_m \cdot h_m^3 \cdot \chi_i \cdot E_U} \quad \text{yields} \quad 2\alpha_i^3 - 3\alpha_i^2 + 1 - \lambda_i = 0$$

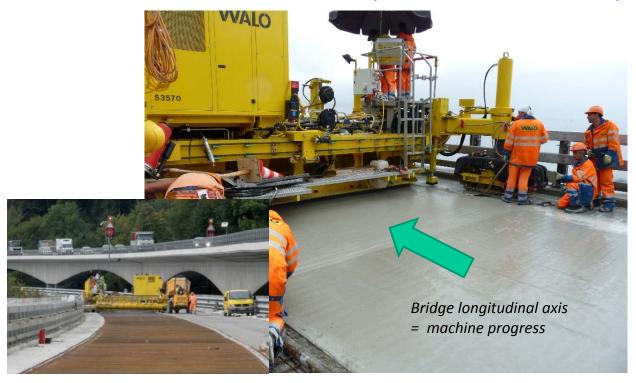
$$\sigma_{Ut_i} = 0.5(1 - \alpha_i)^2 h_m \chi_i E_U \qquad \varepsilon_{Ut_i} = \frac{\sigma_{Ut,i}}{E_U} + \chi_i \alpha_i h_m$$

- → Same basis as AFGC (2013)
- → Generalization + "stop" after point B to avoid effect of tensile softening
- → Calculation for a series of points «i» regularly spaced between points A and C. First point «B» for which calculated stress at lower face is higher than tensile strength f_{Utu} defines end of strain hardening domain : $\varepsilon_{Utu} = \varepsilon_{Ut}$

Chillon viaducts site (CH 2014/2015)

- → 2 x 2.1 km long special casting machine
- → Deck reinforcement with 40 mm R-UHPFRC
- → Rebar in transverse direction + longitudinally only over piles
- → 2400 m³ thixotropic Ductal® NaG3 Tx cast on site with up to 7 % slopes
- → Quality control with representative samples cut out of square plates cast under machine

9



Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

Chillon viaducts site (CH 2014/2015)

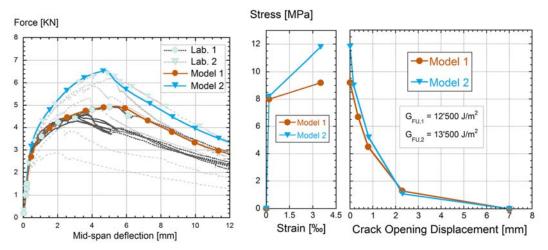
Quality control 2015

Number of specimen

Laboratory	Series 1 - Parallel to laying direction		Series 2 - Perpendicular to laying direction	
	Tensile test	4 PTB test	Tensile test	4 PTB test
Lab. 1	6 x	6 x	6 x	6 x
Lab. 2		6 x		6 x

- → Two different Swiss laboratories involved
- → Tensile and 4 PT bending tests
- → Two directions tested vs casting direction
- → All tests at 28 days, 20°C curing
- → Inverse analysis of 4 PTB via FEM + simplified method

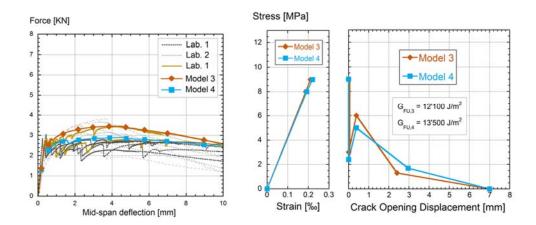
11


UHPFRC 2017 October 2-4 Montpellier (France)

Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

4 PTB test series 1 + FEM models

Loading parallel to casting direction

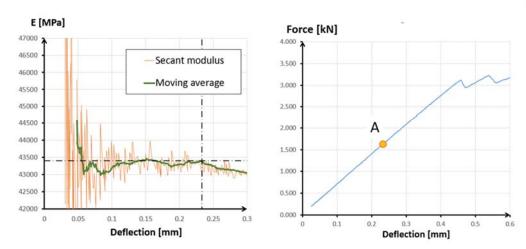

- → Good correspondence between test results of two labs on average. More scatter for specimens of lab.2
- → Material exhibits significant strain hardening response

4 PTB test series 2 + FEM models

Loading perpendicular to casting direction

- → Good correspondence between test results of the two labs.
- → Material exhibits tensile softening response

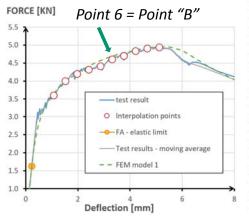
13

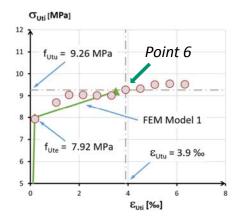

UHPFRC 2017 October 2-4 Montpellier (France)

Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

Determination of elastic limit - example

Loading parallel to casting direction 4 PTB series 1 sample


→ Point A, elastic limit (irreversible decrease of secant modulus > 1 %) for a deflection of 0.223 mm, f_{Ute}=7.92 MPa, elastic modulus 43,400 MPa



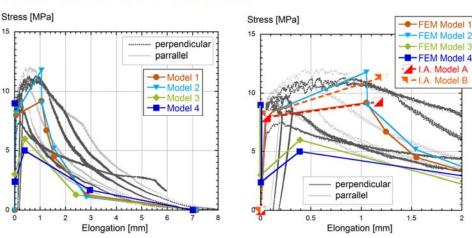
Simplified Inverse Analysis - example

4 PTB series 1 sample

Simplified inverse analysis

- → Excellent agreement between results of inverse analyses with simplified method and FEM
- → Tensile softening activated after point 6 of inverse analysis. largely prior to peak force

15


October 2-4
Montpellier (France)

Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

Synthesis of results

Tensile test results vs inverse analyses predictions

- → No significant effect of direction of loading vs casting for tensile test results
- → Results of tensile test and inverse analyses correspond well

Conclusions

- Two tests methods + inverse analysis method proposed and validated to characterize tensile response of SH-UHPFRC
- Original method for accurate determination of elastic limit
- Original method for inverse analysis of bending test results
- Excellent correspondence with predictions of FEM inverse analyses and tensile test results
- Successfully applied for practical applications in Switzerland since 2015 such as Chillon viaducts reinforcement

17

Denarié E., Sofia L., Brühwiler E. Characterization tensile response...

Thank you for your attention !

